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$ Rutherford Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 OQX, UK 
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Abstract. Properties of electron dynamics in a magnetic field and spin fluctuations in a 
modulated magnet are studied by implementing formulae for response functions derived in 
two previous papers. Results for the electron band structure and density of states are reported 
for a wide range of rational magnetic fields and (tight-binding) band-structure parameters. 
The special features of spin fluctuations in longitudinally modulated magnets are reported 
in terms of the transverse dynamic susceptibility observed in inelastic neutron scattering 
experiments. 

1. Introduction 

The topic of incommensurate systems, characterised by the presence of two relevant 
length scales which in general do not form a rational fraction, has many features that 
intrigue both theorists and experimentalists, Realisations include band electrons in a 
magnetic field, spin fluctuations in longitudinally modulated magnets and adsorbed 
monolayers. For reviews see Simon (1982), Sokoloff (1985) and Currat and Janssen 
(1988). 

In two previous papers (Lovesey 1988a, b) we have addressed the task of deriving 
the analytic dynamics of the standard models for two physically very different systems. 
One model, which describes electrons in a magnetic field H ,  is based on Harper’s 
equation, equivalent to the discrete (lattice) version of Mathieu’s equation, for the 
eigen-function qn, namely 

Here, the integer n is a site label and Q is the modulation wavevector, proportion to H .  
The wave equation (1.1) is based on a tight-binding model and incorporation of the 
magnetic field by the Peierls substitution (minimal coupling). 

A numerical investigation of the energy spectrum has been presented by Hofstadter 
(1976). The previous analytic work (Lovesey 1988a, b) provides a basis for the inter- 
pretation of this numerical work, together with formulae for response functions, includ- 
ing the density of states and site-dependent propagator. The analytic work exploits the 
simplifications that arise for periodic modulations, Q = 2nM/N, with M and Nintegers. 
The latter provides the appropriate theory for understanding numerical simulation 

0953-8984/89/386793 + 14 $02.50 @ 1989 IOP Publishing Ltd 6793 



6794 M A Brackstone and S W Lovesey 

work, and successive approximations to truly incommensurate states. If we should 
choose to look at the electron system experimentally we find that only very small Q values 
are readily accessible in laboratory magnetic fields with samples currently available 
(typically 1 x lo6 T is required to satisfy M / N  = 1/2). 

Relatively large magnetic fields are experienced by atoms in ordered magnetic 
materials. An appropriate incommensurate system is a longitudinally modulated mag- 
netic configuration, realised in some rare-earth metals at elevated temperatures. For 
such systems, Q is typically a significant fraction of n; to a first approximation, neo- 
dymium is described by a modulation Q = n/4. 

The standard electron model and our analysis of its dynamic properties are surveyed 
in § 2. Results for the band structure and density of states are gathered in 0 3 for a wide 
range of parameters. The analogous material for the spin model is presented in §§ 4 and 
5. The conclusions are given in Q 6. 

2. Formalism of the electron model 

In paper I1 (Lovesey 1988b) we looked at the 3D tight-binding model in the presence of 
a magnetic field, incorporated by minimal (Peierls) coupling. Motion in two orthogonal 
directions is plane-wave-like, with the dynamics in a third direction, perpendicular to 
the applied field, described by the one-dimensional Hamiltonian 

x = in>(n + 11 + In + l>(nl + e,  in)(nl (2.1) 
n 

e ,  = 2ycos(nQ + A )  en+N = en 7 

where the eigen-function labelled by a is qjn( a) = ( n  1 a). The difference equation (1.1) 
for the orthonormal eigen-functions is readily obtained, by forming XI a) for example. 

The density of states, Z(w) ,  for a ID system in inversely proportional to the group 
velocity, i.e. to the frequency derivative of the ‘Bloch’ wavefunction K(w) .  If we have 
the particular solutions to ( l . l ) , pm and q,, (m - 1-, m - 2-order polynomials in w with 
coefficients being combinations of the {e,}, subject to the conditions p o  = q1 = 0 and 
p1 = qo = l ) ,  then by using Floquet’s theorem we obtain the relation 

2 cos(NK(w)) = P N + l  + q N  = 8/$. (2.2) 

The second equality defines a polynomial of order N .  We find 

where the prime denotes differentiation of ON with respect to w .  The quantity D N ,  
termed the discriminant, is defined to be 

D~ = 1 - (8,/2)*. (2.4) 

For a band we have Im K = 0, and Bloch-type eigen-functions, whereas for 10Nl > 2, 
Im K - 1n[(eN/2) + -1, giving localised states. 
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Another useful response function is the site representation of the one-particle Green 
function, formed from the resolvent operator, 

G(m, n : z )  = - (mll/(X - z)in). (2.5) 

The density of states, for example, is the sum of the imaginary parts of the site-diagonal 
Green functions. It is straightforward to show from (2.1) that (2.5) satisfies the equation 
of motion 

zG(m, n)  = + G(m + 1 ,  n)  + G(m - 1, n)  + e,G(m, n)  (2.6) 

which is equivalent to (1.1) apart from the inhomogeneous term, a,,,, due to the 
orthonormality of the eigen-functions. The Green function may be expressed in terms 
of continued fractions, i.e. functions of the form 

l / e m - z - I / ( e m + l  - z - .  . .)] (2.7) 

with Re z = w and Im 2 2 0. 
In papers I and I1 it is shown that, for a periodic system e, = e,+N, the continued 

fraction can be written in closed form using the polynomialsp, and qm introduced earlier. 
Hence, the density of states and Green function are expressed in terms of polynomials 
which can readily be generated recursively. 

3. Results for the electron model 

The essential elements of our investigation, the band edges, are the zeros of the dis- 
criminant, DN,  of (2.3). We may ask how the band distribution changes with N ,  what is 
the scale on which these changes occur, and how new bands appear. The behaviour of 
our eigen-functions may also be studied with regard to localisation by varying the 
parameter y in our polynomials and observing the change of not only the bands, but also 
the Lyapunov exponent. Lastly, the long-proposed fractal nature of the spectrum can 
be looked at in a reassuringly simple, and analytically proven, way by forming the 
integrated density of states from (2.2). 

We first reformulate (2.3) to avoid the obvious disadvantage in a numerical scheme 
of having to evaluate a derivative. This is accomplished by casting the Green function 
in terms of the partial numerators and denominators (A ,  and B, respectively) of 
continued fractions like (2.7), of which they are composed. The quantities A,  and B, 
are simply related topm and qm, of course, but they are slightly simpler to implement. 
The density of states to be calculated is 

Z d w )  - 2 Im(G(m, m;  4) 
m 

and we obtain the numerically useful alternative form 

Q, = eoele2 .  . . e,-l D ,  2 0. 
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It can be shown that (3.2) and (2.3) are identical by observing that the partial numerators, 
etc, obey the common recursion relation (R ,  = A,, Bm): 

R ,  = Rm-l - em-1R,-2 

which is only a scale factor different from the equation whose solutions are p m  and 4,. 
Using the Chirstoffel-Darboux relaxation (Akhiezer 1965) between sums of R, and their 
derivatives, the relationship between continued fractions and orthogonal polynomials 
becomes evident. 

The basic structure of Z ( w )  is that it is split into N bands, from the 2N zeros of D N .  
We index the roots Ai and pi (periodic and antiperiodic) according to whether they are 
the roots of O N  T 2 = 0, respectively. We have shown that the roots form a series of 
alternating pairs. The maximum width of the spectrum is independent of N .  Given that 
the number of roots is 2N, the band structure becomes more fragmented with increasing 
N. 

For the moment it is useful to consider the extreme case, y = 0, where N - 1 of the 
roots are doubly degenerate, giving a ‘connected’ spectrum. For example, M / N  = 1/4, 
y = 0, D4 = (w4 - 4w2)(o4 - 4w2 + 4) giving coinciding pairs of roots at k d 2  and 0. 
The exact form of the degeneracy can be obtained from (7.9) of Lovesey (1988b), where 
we have 8, = 2 cos(Np) and 

Let us consider a particular non-trivial situation. Choosing the phase, A ,  to be that 
used in Hofstadter’s work (= -7c/2N), we have a symmetric series of roots, where, for 
Nodd, Ai = pi, and Neven pi = - , u ~ + ~ - ~ .  For example, M/N = 1/4, y = 1: 

= c0s-~(w/2). 

Z,(w>=(l /n)  ~ W ( W ‘  - 4 ) / / V ‘ ( ~ ~ - 8 0 ’ + 6 ) ( ~ ~ - 8 ~ ~ + 2 )  D, 2 0  (3.3) 
as shown in figure 1. 

The need for numerical work can be seen when we examine a higher period: here 
we could recursively generate O N ,  but only after lengthy calculation. The questions 
addressed below are: (i) the spectral dependence on y ,  and (ii) the general form of the 
band arrangement for a series of different periodicities, M / N  (Hofstadter’s butterfly). 

Choosing for our illustrative example, M / N  = 1/7, we have the stated root degener- 
acy at y = 0. For other y values (figure 2) we have the requisite number of independent 
roots, though some may not be detected, having bandwidths below the resolution of the 
calculation ( A E  = This may be shown by checking the result of some rules 
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W W 

Figure 2. Numerical DOS for M / N  = 1/7 and (a )  y = 0.5, ( b )  y = 1.0 

calculated from the Green function, 

J --x 

which gives, for example for n = 2, the value 2 -t e%. Since for y1 = 0 (3.4) gives unity, 
we can interpret n = 2 as the ‘mean square’ of the spectrum. 

We have cross-checked our results with those of Turchi et a1 (1982). They use a 
perturbation analysis valid for small y on a tight-binding Hamiltonian with general 
hopping/on-site coefficients, with the restriction of giving a two-gap spectrum. Applying 
this to our Hamiltonian for a periodicity of N = 3 with y < 1, the gaps should be located 
at approximately w = .tl and have a width - y  (figure 3). Also they present exact 
solutions for a single-gap spectrum. In our corresponding case, N = 2, their results 
predict maximal band edges at 2 k 2( 1 + f /2)  and a band width of 2 g 2 y ,  thus giving 
a spectrum of vanishing measure as y + CC (figure 4). 

Another guide is provided by Harper (1955), where a WKB (large-N)-type method is 
employed on the difference equation for y = 1. Harper predicts that the band gaps are 
roughly the same for the outlying bands which have a narrow width, while, for low 
energy, the spacing increases and the bands rapidly broaden. For a comparatively low 
N ,  the band-gap observation is obviously hard to verify. 

To look at the full effect of periodicity on the energy spectra, we produce ‘Hofstad- 
ter’s butterfly’ for a range of rational fractions MIN.  In the original work this was 
produced by diagonalising a system of transfer matrices. Our procedure is to find the 
zeros of the discriminant, DN,  using a Sturmian process with resolution AE = 5 x 
(higher than previously, to ensure that the full forms of the spectra are plotted and 
appreciated). Our results (figure 5)are similar to those presented by Hofstadter in that 
the spectra, visually, seem to form a self-similar, Cantor-type process. Some measure 
of the highly fragmented, close-spaced structure can be gauged from our quadratic and 
quartic sum rules. The greater the discrepancy, the more bands (band gaps) with a 
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0 - 4  

Figure 3. Isometric plot of DOS for M / N  = 113 

0 -L 

Figure 4. Isometric DOS for M / N  = 112 

measure lpi - Ail( lpi - p i + l l )  or lAi - Ai+l l )  less than our resolution we have missed. As 
is obvious by now, this will be the case for large N (in accordance with Harper’s 
results), We have also obtained plots for other values of y (figure 6) which confirm our 
observations at lower N ;  a broadening of the bands and a ‘bunching’ of the spectrum for 
y < 1, and the opposite for y > 1. For extreme values this produces a noticeable effect. 
By y = 0.5 a visual band merging has started to occur (i.e. small band gaps, if plotable 



Analytic dynamics of the ID tight-binding model: 111 6799 

. .  

- 
I 

- I- 
k 
E 
E 

. - .  

- , _. $ 0.25; I - 

- t -  

. .  

- 
I 

- I- 
k 
i 

. - .  
i 

- , _. $ 0.25; I - 

- t -  

W 
4 

Figure 6. ‘Hofstadter moths’: M / N  against w for (a) = 0.5 and ( b )  y = 1.1. 

at all!), alternatively by y = 1.1 we have ‘thinning’ producing a very sparse picture due 
to ‘vanishing’ bandwidths. From Turchi’s work we are also given a bounding equality 
for the bandwidth, W, = max(A,,, p,,) - min(A,, p l ) ,  and the total measure of the 
spectrum 

namely 

which are satisfied by our N = 2 expressions. We also verify these numerically for low 
N in table 1. 
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Table 1. Equalities (3..5) for y = 1 and various low Nfor M = 1. 

2 4.90 2.07 2.83 2.83 1.13 
3 5.20 1.36 3.46 3.84 9.04 
4 5.56 1.03 3.70 4.53 10.09 
5 5.90 0.82 3.80 5.08 10.98 
7 6.40 0.58 3.90 5.82 12.22 

-4 - 2  0 2 
W 

Figure 7. Analytically integrated DOS for M/N = 
1/7, y = 1.0. 

Another, traditional, way of displaying multiband behaviour is the integrated density 
of states (IDS). We may perform this evaluation in two ways. 

(i) Numerical integration. Here we face the problem of area approximation to a 
function that is already inaccurate, in that we do not pick up all the intensity per band, 
due to our finite bin widths; in fact, with increasing Nand y ,  we stand a growing chance 
of missing areas of a high spectral weight altogether! 

(ii) Integrating (2.3) analytically gives us an exact expression for the contribution to 
the IDS at any point within a band; it is constant in the gaps, between our 'steps'. In our 
evaluation we take care to distinguish which factor in DN is identified with a root of our 
polynomial, 

2 + ~ , ~ ( p . , )  = 2 - e,(/z,) = 0. 

One observation we make is that the addition from each band is 1/N, independent of 
the size and form of the polynomial 1 q,, I d D N ,  in the interval 

which, as there are N bands, gives us a normalised density of states (figure 7). 
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Exacting questions can now be asked with regard to the Cantor form and measure 
in the incommensurate limits. These points will be taken up in 8 6. 

4. Spin fluctuations 

The second model that we examine is similar to the much studied ANNNI model. Our 
model is a Heisenberg, rather than an Ising, magnet, with competing neighbour and 
next-nearest-neighbour interactions along one axis. The spin Hamiltonian is 

J(k) = Jo [cos(u*~) + cos(b.k)] + J1 COS(C*~)  + J2 cos(2c.k). 

A molecular-field approximation, where we have k parallel to our ‘easy Q’ axis, gives 
an Elliott (1961)-type ground state with 

(S:)  = S cos(Q.r) 

J I / J ,  = - 4 COS( Q ) .  
for 

Using a linear approximation and S as a temperature-dependent quantity in the equation 
of motion is equivalent to a Boson prescription for the spin operators: 

[Sl+n,, S i + m ~ l  = S ( a n , m + 1  + a n , m - l ) *  (4.3) 
From this point we can swiftly derive an equivalent expression to (2.6) for the wave- 
vector-dependent transverse spin Green function, with our diagonal term replaced by 
the off-diagonal coupling of (4.3): 

wG(m, n)  = S(bm,n+l  + dm,n- l )  + W,-,G(m - 1 , n )  + W,+lG(m + 1,n)  (4.4) 
where W, are energy coefficients (in units of S ( D  + J1 cos Q + J2 cos 2 Q ) ) :  

W ,  = 1 + CY cos(k + mQ) + /3 cos(2(k + mQ)) (4.5) 

C Y / P = J ~ / J ~  = - ~ c o s ( Q ) .  
Expanding our spin operators in terms of eigen-states of our equations of motion, we 
find 

where 

[b,, b,+I = w&Y,,. 

The static susceptibility is found to be 
(4.7) 

As xo is necessarily non-negative, we are able to impose physical restrictions on m and 
P. From (4.8) we note that x o ( k )  has a maximum for k = Q, giving 

xo(Q) = 2S/[1 - P(1+  2 cos2 Q)l (4.9) 
which generates a stable structure for 0 < P < 1/3. 
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The next stage is essentially a straightforward application of the procedure in 8 2. 
However. there is no frequency dependence in the coefficients in the continued 
fraction, and we have the recursion relation 

(4.10) 

generating our generically identical polynomials. 
A quantity of interest to any experimental investigation of crystals described by 

such a Hamiltonian (for example, certain phases in some rare-earth metals) is the 
dynamic susceptibility. describing the behaviour of fluctuations in the transverse spin 
components 

Rn = W R n - 1  - WnW,,-IR,, 2 

Lp”? b 0 

W L , < 0  
Im[G(O, O)] ~ = { -;O/~)IB,-I l/V(L,v) 

L A ,  =  WOW^ . . . W,\F+1)’ - (AN-1 + B,)*. 

(4.11) 

This is exactly similar, as one might expect, to the electron density of states (2.3). 

5. Results for the spin model 

The form of the equations we are dealing with for Im Go,” differ only slightly from 
those used earlier for the electronic model. Our main numerical problem occurs for 
zero frequency where, according to whether N is odd or even (Lovesey 1988a), 
AN-* + BN may be zero, hence giving a singularity. For ease of computation we 
remove this feature, which is essentially pathological in nature anyway, whereas the 
band-edge singularities are formed by the exacting structure of the polynomials. 

An additional feature is the dependence on a second parameter k ,  the external 
wavevector. We can see intuitively that varying k has a comparatively small effect on 
the band edges due to the scale imposed on the modulation by p. However, k- 
dependence can alter the shape of band, particularly at the edge, as the simple N = 
4 case shows: 

(Im[G(O, O)]/W)~ - 1/[4(1 -p’ cos’(2k)) - w ~ ] ~ / * .  (5.1) 

Another element to be looked at is the Q numerator, M .  We show the spectrum for 
a series of M / N ,  with N manageably low (7) to avoid resolution problems (figure 8). 
Its effect is similar to that of 6: to change the band shape and also to introduce possible 
degeneracy at the band edges. 

We also predict a response for the corresponding antiferromagnetic structure: 

Q‘ = 16 - Q = 2n(N - 2M)/2N. (5.2) 

For even N this reduces to M ’ / N ,  a similar type of spectrum. For odd N ,  however, 
our function is controlled by the polynomial L2N, quite different from the ferromagnetic 
case. In our example, 1/7 gives Q‘ = 2n(7 - 2)/14 = 2~.5 /14;  our corresponding 
antiferromagnetic state is governed by L14. 

The numerical work of Ziman and Lindgard (1986) on this model is based on 
Q - 216 0.12987 . . . . We present two approximations to this Q, M / N  = 1/8 (0.125) 
and 7/54 (-0.12963) (figures 9 and 10). Considering the extremely complicated 
behaviour of high-order polynomials, we have a great deal of similarity between the 
three cases (as our Q vectors are all about equal this should be expected!). The fine 
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w 

L 
1 5  3 0  Figure 8. Dynamic susceptibility, x / w ,  for k = 

W n/4 and ( a )  M I N  = 117, ( b )  211, ( c )  311 

structure that appears with increasing N will not be resolved experimentally. However, 
the spectrum of spin fluctuations for an incommensurately modulated system is 
radically different from a commensurate ferromagnetic or antiferromagnetic system 
in which the response is isolated in the spin dispersion. 

6. Discussion 

We have implemented the analysis proposed in previous papers to provide detailed 
pictures of the dynamics of electrons in a rational magnetic field, and spin fluctuations 
in modulated magnets. A similar discussion of related problems, such as lattice 
vibrations in a modulated crystal, is a relatively straightforward exercise. 

Thus far we have not exploited the formalism to analyse the precise structure of 
the energy spectrum. Questions of interest in this regard are addressed below. 



6804 M A Brackstone and S W Lovesey 

l o )  

0 

2 A X I S  * 1 0  

0 

Figure 9. Isometric plots for x/o: (a) M / N  = 1/8, ( b )  7/54; and high-resolution graphs 
for ( c )  M / N  = 1/8, k = 0, (d )  7/54, k = 0. 

(i) The period-energy butterflies are formed by a Cantor process for a rational 
fraction Q. But what is the exact relationship between the spectrum of M / N  and 
M’/N’?  Can we predict the bands of one knowing the bands of another? There are 
two consequences of changing the denominator in our formalism. First, the coefficients 
in ON change. As the roots of a polynomial change continuously with a continuous 
change in its coefficients we might be able to answer this point, but we are also 
changing the order of our polynomial, which is a discrete change, hence adding greatly 
to the complexity of the problem. 

We know our continued fraction representation is equivalent to that of periodic 
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Figure 9. continued. 

Jacobi matrices, the properties of which have been subject to rigorous investigation 
in recent years (see, e.g., Kat0 1983), and it is in this field that an exacting analysis 
may yield the hoped-for Cantor form. 

(ii) Do our spectra have vanishing measure (do some of the bandwidths vanish) in 
the incommensurate limit? Investigations by, for example, Janssen and Kohmoto 
(1988) yield scaling indices for such systems. In a later paper we hope to corroborate 
their findings. 

An example of the spectrum obtained for improved approximations to an irrational 
modulation wavevector is provided in § 5 .  For this simple case the structure of the 
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- w  0 

Figure 10. Ziman Lindgard’s results for M / N  - 0.12987 (Im ~ ( 9 ,  w ) / o ) .  

response does not change appreciably. We thus are led to expect that after the response 
function is convoluted with instrumental resolution, it will be difficult to distinguish 
experimentally between successive approximations for Q. 
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